Cargando…
Control of sheep flystrike: what's been tried in the past and where to from here
Flystrike remains a serious financial and animal welfare issue for the sheep industry in Australia despite many years of research into control methods. The present paper provides an extensive review of past research on flystrike, and highlights areas that hold promise for providing long‐term control...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Publishing Asia Pty Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299489/ https://www.ncbi.nlm.nih.gov/pubmed/34761372 http://dx.doi.org/10.1111/avj.13131 |
Sumario: | Flystrike remains a serious financial and animal welfare issue for the sheep industry in Australia despite many years of research into control methods. The present paper provides an extensive review of past research on flystrike, and highlights areas that hold promise for providing long‐term control options. We describe areas where the application of modern scientific advances may provide increased impetus to some novel, as well as some previously explored, control methods. We provide recommendations for research activities: insecticide resistance management, novel delivery methods for therapeutics, improved breeding indices for flystrike‐related traits, mechanism of nematode‐induced scouring in mature animals. We also identify areas where advances can be made in flystrike control through the greater adoption of well‐recognised existing management approaches: optimal insecticide‐use patterns, increased use of flystrike‐related Australian Sheep Breeding Values, and management practices to prevent scouring in young sheep. We indicate that breeding efforts should be primarily focussed on the adoption and improvement of currently available breeding tools and towards the future integration of genomic selection methods. We describe factors that will impact on the ongoing availability of insecticides for flystrike control and on the feasibility of vaccination. We also describe areas where the blowfly genome may be useful in providing impetus to some flystrike control strategies, such as area‐wide approaches that seek to directly suppress or eradicate sheep blowfly populations. However, we also highlight the fact that commercial and feasibility considerations will act to temper the potential for the genome to act as the basis for providing some control options. |
---|