Cargando…

Heterogeneity of Potassium Channels in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium

Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the...

Descripción completa

Detalles Bibliográficos
Autores principales: Korkka, Iina, Skottman, Heli, Nymark, Soile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299513/
https://www.ncbi.nlm.nih.gov/pubmed/35639962
http://dx.doi.org/10.1093/stcltm/szac029
Descripción
Sumario:Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce. We examined the functionality and localization of potassium (K(+)) channels in the human embryonic stem cell (hESC)-derived RPE. We observed a heterogeneous pattern of voltage-gated K(+) (K(V)) and inwardly rectifying K(+) (Kir) channels. Delayed rectifier currents were recorded from most of the cells, and immunostainings showed the presence of K(V)1.3 channel. Sustained M-currents were also present in the hESC-RPE, and based on immunostaining, these currents were carried by KCNQ1-KCNQ5 channel types. Some cells expressed transient A-type currents characteristic of native human fetal RPE (hfRPE) and cultured primary RPE and carried by K(V)1.4 and K(V)4.2 channels. Of the highly important Kir channels, we found that Kir7.1 is present both at the apical and basolateral membranes of the hESC- and fresh native mouse RPE. Kir currents, however, were recorded only from 14% of the hESC-RPE cells with relatively low amplitudes. Compared to previous studies, our data suggest that in the hESC-RPE, the characteristics of the delayed rectifier and M-currents resemble native adult RPE, while A-type and Kir currents resemble native hfRPE or cultured primary RPE. Overall, the channelome of the RPE is a sensitive indicator of maturity and functionality affecting its therapeutic utility.