Cargando…

Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia

The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament (“F-actin”) assemb...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Rui, Jiang, Fangfang, Moreland, Zane G., Reynolds, Matthew J., de los Reyes, Santiago Espinosa, Gurel, Pinar, Shams, Arik, Heidings, James B., Bowl, Michael R., Bird, Jonathan E., Alushin, Gregory M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299544/
https://www.ncbi.nlm.nih.gov/pubmed/35857845
http://dx.doi.org/10.1126/sciadv.abl4733
Descripción
Sumario:The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament (“F-actin”) assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, “jordan”). Here, we present cryo–electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin’s D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate–bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin’s structural plasticity in a myosin nucleotide state–dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.