Cargando…
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine learning (ML) implementatio...
Autores principales: | Yang, Jason, Tao, Lei, He, Jinlong, McCutcheon, Jeffrey R., Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299556/ https://www.ncbi.nlm.nih.gov/pubmed/35857839 http://dx.doi.org/10.1126/sciadv.abn9545 |
Ejemplares similares
-
Polymer Membranes for Gas Separation
por: Lasseuguette, Elsa, et al.
Publicado: (2022) -
Designing exceptional gas-separation polymer membranes using machine learning
por: Barnett, J. Wesley, et al.
Publicado: (2020) -
Mechanically mutable polymer enabled by light
por: Cai, Feng, et al.
Publicado: (2022) -
Perfluorodioxolane Polymers for Gas Separation Membrane Applications
por: Okamoto, Yoshiyuki, et al.
Publicado: (2020) -
Polymer membranes for gas and vapor separation : chemistry and materials science /
Publicado: (1999)