Cargando…
Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations
One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the for...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299682/ https://www.ncbi.nlm.nih.gov/pubmed/34854511 http://dx.doi.org/10.1002/chem.202103636 |
_version_ | 1784751031184261120 |
---|---|
author | Camiruaga, Ander Usabiaga, Imanol Calabrese, Camilla Lamas, Iker Basterretxea, Francisco J. Fernández, José A. |
author_facet | Camiruaga, Ander Usabiaga, Imanol Calabrese, Camilla Lamas, Iker Basterretxea, Francisco J. Fernández, José A. |
author_sort | Camiruaga, Ander |
collection | PubMed |
description | One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4‐aminopyrimidine. Using a combination of mass‐resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine‐theobromine and 4‐aminopyrimidine‐theobromine dimers. The binding energy of these dimers is very close to the canonical adenine‐thymine nucleobases. Likewise, the dimers are able to adopt Watson‐Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4‐aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly‐bonded partners or if it did, such proto‐bases were later replaced by the nowadays canonical CGAT. |
format | Online Article Text |
id | pubmed-9299682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92996822022-07-21 Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations Camiruaga, Ander Usabiaga, Imanol Calabrese, Camilla Lamas, Iker Basterretxea, Francisco J. Fernández, José A. Chemistry Research Articles One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4‐aminopyrimidine. Using a combination of mass‐resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine‐theobromine and 4‐aminopyrimidine‐theobromine dimers. The binding energy of these dimers is very close to the canonical adenine‐thymine nucleobases. Likewise, the dimers are able to adopt Watson‐Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4‐aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly‐bonded partners or if it did, such proto‐bases were later replaced by the nowadays canonical CGAT. John Wiley and Sons Inc. 2021-12-02 2022-01-03 /pmc/articles/PMC9299682/ /pubmed/34854511 http://dx.doi.org/10.1002/chem.202103636 Text en © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Camiruaga, Ander Usabiaga, Imanol Calabrese, Camilla Lamas, Iker Basterretxea, Francisco J. Fernández, José A. Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title | Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title_full | Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title_fullStr | Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title_full_unstemmed | Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title_short | Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations |
title_sort | exploring the influence of intermolecular interactions in prebiotic chemistry using laser spectroscopy and calculations |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299682/ https://www.ncbi.nlm.nih.gov/pubmed/34854511 http://dx.doi.org/10.1002/chem.202103636 |
work_keys_str_mv | AT camiruagaander exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations AT usabiagaimanol exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations AT calabresecamilla exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations AT lamasiker exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations AT basterretxeafranciscoj exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations AT fernandezjosea exploringtheinfluenceofintermolecularinteractionsinprebioticchemistryusinglaserspectroscopyandcalculations |