Cargando…

Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals

BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susc...

Descripción completa

Detalles Bibliográficos
Autores principales: Goikoetxea‐Usandizaga, Naroa, Serrano‐Maciá, Marina, Delgado, Teresa C., Simón, Jorge, Fernández Ramos, David, Barriales, Diego, Cornide, Maria E., Jiménez, Mónica, Pérez‐Redondo, Marina, Lachiondo‐Ortega, Sofia, Rodríguez‐Agudo, Rubén, Bizkarguenaga, Maider, Zalamea, Juan Diego, Pasco, Samuel T., Caballero‐Díaz, Daniel, Alfano, Benedetta, Bravo, Miren, González‐Recio, Irene, Mercado‐Gómez, Maria, Gil‐Pitarch, Clàudia, Mabe, Jon, Gracia‐Sancho, Jordi, Abecia, Leticia, Lorenzo, Óscar, Martín‐Sanz, Paloma, Abrescia, Nicola G. A., Sabio, Guadalupe, Rincón, Mercedes, Anguita, Juan, Miñambres, Eduardo, Martín, César, Berenguer, Marina, Fabregat, Isabel, Casado, Marta, Peralta, Carmen, Varela‐Rey, Marta, Martínez‐Chantar, María Luz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300136/
https://www.ncbi.nlm.nih.gov/pubmed/34510498
http://dx.doi.org/10.1002/hep.32149
_version_ 1784751141938003968
author Goikoetxea‐Usandizaga, Naroa
Serrano‐Maciá, Marina
Delgado, Teresa C.
Simón, Jorge
Fernández Ramos, David
Barriales, Diego
Cornide, Maria E.
Jiménez, Mónica
Pérez‐Redondo, Marina
Lachiondo‐Ortega, Sofia
Rodríguez‐Agudo, Rubén
Bizkarguenaga, Maider
Zalamea, Juan Diego
Pasco, Samuel T.
Caballero‐Díaz, Daniel
Alfano, Benedetta
Bravo, Miren
González‐Recio, Irene
Mercado‐Gómez, Maria
Gil‐Pitarch, Clàudia
Mabe, Jon
Gracia‐Sancho, Jordi
Abecia, Leticia
Lorenzo, Óscar
Martín‐Sanz, Paloma
Abrescia, Nicola G. A.
Sabio, Guadalupe
Rincón, Mercedes
Anguita, Juan
Miñambres, Eduardo
Martín, César
Berenguer, Marina
Fabregat, Isabel
Casado, Marta
Peralta, Carmen
Varela‐Rey, Marta
Martínez‐Chantar, María Luz
author_facet Goikoetxea‐Usandizaga, Naroa
Serrano‐Maciá, Marina
Delgado, Teresa C.
Simón, Jorge
Fernández Ramos, David
Barriales, Diego
Cornide, Maria E.
Jiménez, Mónica
Pérez‐Redondo, Marina
Lachiondo‐Ortega, Sofia
Rodríguez‐Agudo, Rubén
Bizkarguenaga, Maider
Zalamea, Juan Diego
Pasco, Samuel T.
Caballero‐Díaz, Daniel
Alfano, Benedetta
Bravo, Miren
González‐Recio, Irene
Mercado‐Gómez, Maria
Gil‐Pitarch, Clàudia
Mabe, Jon
Gracia‐Sancho, Jordi
Abecia, Leticia
Lorenzo, Óscar
Martín‐Sanz, Paloma
Abrescia, Nicola G. A.
Sabio, Guadalupe
Rincón, Mercedes
Anguita, Juan
Miñambres, Eduardo
Martín, César
Berenguer, Marina
Fabregat, Isabel
Casado, Marta
Peralta, Carmen
Varela‐Rey, Marta
Martínez‐Chantar, María Luz
author_sort Goikoetxea‐Usandizaga, Naroa
collection PubMed
description BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation‐controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild‐type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL‐6, and heparin‐binding EGF, accelerating the priming phase and the progression through G(1)/S transition during liver regeneration. Therapeutic silencing of MCJ in 15‐month‐old mice and in mice fed a high‐fat/high‐fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI‐susceptible organs.
format Online
Article
Text
id pubmed-9300136
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93001362022-07-21 Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals Goikoetxea‐Usandizaga, Naroa Serrano‐Maciá, Marina Delgado, Teresa C. Simón, Jorge Fernández Ramos, David Barriales, Diego Cornide, Maria E. Jiménez, Mónica Pérez‐Redondo, Marina Lachiondo‐Ortega, Sofia Rodríguez‐Agudo, Rubén Bizkarguenaga, Maider Zalamea, Juan Diego Pasco, Samuel T. Caballero‐Díaz, Daniel Alfano, Benedetta Bravo, Miren González‐Recio, Irene Mercado‐Gómez, Maria Gil‐Pitarch, Clàudia Mabe, Jon Gracia‐Sancho, Jordi Abecia, Leticia Lorenzo, Óscar Martín‐Sanz, Paloma Abrescia, Nicola G. A. Sabio, Guadalupe Rincón, Mercedes Anguita, Juan Miñambres, Eduardo Martín, César Berenguer, Marina Fabregat, Isabel Casado, Marta Peralta, Carmen Varela‐Rey, Marta Martínez‐Chantar, María Luz Hepatology Original Articles BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation‐controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild‐type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL‐6, and heparin‐binding EGF, accelerating the priming phase and the progression through G(1)/S transition during liver regeneration. Therapeutic silencing of MCJ in 15‐month‐old mice and in mice fed a high‐fat/high‐fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI‐susceptible organs. John Wiley and Sons Inc. 2021-12-15 2022-03 /pmc/articles/PMC9300136/ /pubmed/34510498 http://dx.doi.org/10.1002/hep.32149 Text en © 2021 The Authors. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Goikoetxea‐Usandizaga, Naroa
Serrano‐Maciá, Marina
Delgado, Teresa C.
Simón, Jorge
Fernández Ramos, David
Barriales, Diego
Cornide, Maria E.
Jiménez, Mónica
Pérez‐Redondo, Marina
Lachiondo‐Ortega, Sofia
Rodríguez‐Agudo, Rubén
Bizkarguenaga, Maider
Zalamea, Juan Diego
Pasco, Samuel T.
Caballero‐Díaz, Daniel
Alfano, Benedetta
Bravo, Miren
González‐Recio, Irene
Mercado‐Gómez, Maria
Gil‐Pitarch, Clàudia
Mabe, Jon
Gracia‐Sancho, Jordi
Abecia, Leticia
Lorenzo, Óscar
Martín‐Sanz, Paloma
Abrescia, Nicola G. A.
Sabio, Guadalupe
Rincón, Mercedes
Anguita, Juan
Miñambres, Eduardo
Martín, César
Berenguer, Marina
Fabregat, Isabel
Casado, Marta
Peralta, Carmen
Varela‐Rey, Marta
Martínez‐Chantar, María Luz
Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title_full Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title_fullStr Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title_full_unstemmed Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title_short Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
title_sort mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300136/
https://www.ncbi.nlm.nih.gov/pubmed/34510498
http://dx.doi.org/10.1002/hep.32149
work_keys_str_mv AT goikoetxeausandizaganaroa mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT serranomaciamarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT delgadoteresac mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT simonjorge mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT fernandezramosdavid mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT barrialesdiego mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT cornidemariae mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT jimenezmonica mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT perezredondomarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT lachiondoortegasofia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT rodriguezagudoruben mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT bizkarguenagamaider mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT zalameajuandiego mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT pascosamuelt mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT caballerodiazdaniel mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT alfanobenedetta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT bravomiren mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT gonzalezrecioirene mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT mercadogomezmaria mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT gilpitarchclaudia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT mabejon mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT graciasanchojordi mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT abecialeticia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT lorenzooscar mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT martinsanzpaloma mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT abrescianicolaga mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT sabioguadalupe mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT rinconmercedes mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT anguitajuan mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT minambreseduardo mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT martincesar mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT berenguermarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT fabregatisabel mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT casadomarta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT peraltacarmen mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT varelareymarta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals
AT martinezchantarmarialuz mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals