Cargando…
Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300136/ https://www.ncbi.nlm.nih.gov/pubmed/34510498 http://dx.doi.org/10.1002/hep.32149 |
_version_ | 1784751141938003968 |
---|---|
author | Goikoetxea‐Usandizaga, Naroa Serrano‐Maciá, Marina Delgado, Teresa C. Simón, Jorge Fernández Ramos, David Barriales, Diego Cornide, Maria E. Jiménez, Mónica Pérez‐Redondo, Marina Lachiondo‐Ortega, Sofia Rodríguez‐Agudo, Rubén Bizkarguenaga, Maider Zalamea, Juan Diego Pasco, Samuel T. Caballero‐Díaz, Daniel Alfano, Benedetta Bravo, Miren González‐Recio, Irene Mercado‐Gómez, Maria Gil‐Pitarch, Clàudia Mabe, Jon Gracia‐Sancho, Jordi Abecia, Leticia Lorenzo, Óscar Martín‐Sanz, Paloma Abrescia, Nicola G. A. Sabio, Guadalupe Rincón, Mercedes Anguita, Juan Miñambres, Eduardo Martín, César Berenguer, Marina Fabregat, Isabel Casado, Marta Peralta, Carmen Varela‐Rey, Marta Martínez‐Chantar, María Luz |
author_facet | Goikoetxea‐Usandizaga, Naroa Serrano‐Maciá, Marina Delgado, Teresa C. Simón, Jorge Fernández Ramos, David Barriales, Diego Cornide, Maria E. Jiménez, Mónica Pérez‐Redondo, Marina Lachiondo‐Ortega, Sofia Rodríguez‐Agudo, Rubén Bizkarguenaga, Maider Zalamea, Juan Diego Pasco, Samuel T. Caballero‐Díaz, Daniel Alfano, Benedetta Bravo, Miren González‐Recio, Irene Mercado‐Gómez, Maria Gil‐Pitarch, Clàudia Mabe, Jon Gracia‐Sancho, Jordi Abecia, Leticia Lorenzo, Óscar Martín‐Sanz, Paloma Abrescia, Nicola G. A. Sabio, Guadalupe Rincón, Mercedes Anguita, Juan Miñambres, Eduardo Martín, César Berenguer, Marina Fabregat, Isabel Casado, Marta Peralta, Carmen Varela‐Rey, Marta Martínez‐Chantar, María Luz |
author_sort | Goikoetxea‐Usandizaga, Naroa |
collection | PubMed |
description | BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation‐controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild‐type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL‐6, and heparin‐binding EGF, accelerating the priming phase and the progression through G(1)/S transition during liver regeneration. Therapeutic silencing of MCJ in 15‐month‐old mice and in mice fed a high‐fat/high‐fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI‐susceptible organs. |
format | Online Article Text |
id | pubmed-9300136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93001362022-07-21 Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals Goikoetxea‐Usandizaga, Naroa Serrano‐Maciá, Marina Delgado, Teresa C. Simón, Jorge Fernández Ramos, David Barriales, Diego Cornide, Maria E. Jiménez, Mónica Pérez‐Redondo, Marina Lachiondo‐Ortega, Sofia Rodríguez‐Agudo, Rubén Bizkarguenaga, Maider Zalamea, Juan Diego Pasco, Samuel T. Caballero‐Díaz, Daniel Alfano, Benedetta Bravo, Miren González‐Recio, Irene Mercado‐Gómez, Maria Gil‐Pitarch, Clàudia Mabe, Jon Gracia‐Sancho, Jordi Abecia, Leticia Lorenzo, Óscar Martín‐Sanz, Paloma Abrescia, Nicola G. A. Sabio, Guadalupe Rincón, Mercedes Anguita, Juan Miñambres, Eduardo Martín, César Berenguer, Marina Fabregat, Isabel Casado, Marta Peralta, Carmen Varela‐Rey, Marta Martínez‐Chantar, María Luz Hepatology Original Articles BACKGROUND AND AIMS: Hepatic ischemia–reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation‐controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild‐type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL‐6, and heparin‐binding EGF, accelerating the priming phase and the progression through G(1)/S transition during liver regeneration. Therapeutic silencing of MCJ in 15‐month‐old mice and in mice fed a high‐fat/high‐fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI‐susceptible organs. John Wiley and Sons Inc. 2021-12-15 2022-03 /pmc/articles/PMC9300136/ /pubmed/34510498 http://dx.doi.org/10.1002/hep.32149 Text en © 2021 The Authors. Hepatology published by Wiley Periodicals LLC on behalf of American Association for the Study of Liver Diseases. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Goikoetxea‐Usandizaga, Naroa Serrano‐Maciá, Marina Delgado, Teresa C. Simón, Jorge Fernández Ramos, David Barriales, Diego Cornide, Maria E. Jiménez, Mónica Pérez‐Redondo, Marina Lachiondo‐Ortega, Sofia Rodríguez‐Agudo, Rubén Bizkarguenaga, Maider Zalamea, Juan Diego Pasco, Samuel T. Caballero‐Díaz, Daniel Alfano, Benedetta Bravo, Miren González‐Recio, Irene Mercado‐Gómez, Maria Gil‐Pitarch, Clàudia Mabe, Jon Gracia‐Sancho, Jordi Abecia, Leticia Lorenzo, Óscar Martín‐Sanz, Paloma Abrescia, Nicola G. A. Sabio, Guadalupe Rincón, Mercedes Anguita, Juan Miñambres, Eduardo Martín, César Berenguer, Marina Fabregat, Isabel Casado, Marta Peralta, Carmen Varela‐Rey, Marta Martínez‐Chantar, María Luz Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title_full | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title_fullStr | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title_full_unstemmed | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title_short | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
title_sort | mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300136/ https://www.ncbi.nlm.nih.gov/pubmed/34510498 http://dx.doi.org/10.1002/hep.32149 |
work_keys_str_mv | AT goikoetxeausandizaganaroa mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT serranomaciamarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT delgadoteresac mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT simonjorge mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT fernandezramosdavid mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT barrialesdiego mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT cornidemariae mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT jimenezmonica mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT perezredondomarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT lachiondoortegasofia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT rodriguezagudoruben mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT bizkarguenagamaider mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT zalameajuandiego mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT pascosamuelt mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT caballerodiazdaniel mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT alfanobenedetta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT bravomiren mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT gonzalezrecioirene mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT mercadogomezmaria mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT gilpitarchclaudia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT mabejon mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT graciasanchojordi mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT abecialeticia mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT lorenzooscar mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT martinsanzpaloma mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT abrescianicolaga mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT sabioguadalupe mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT rinconmercedes mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT anguitajuan mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT minambreseduardo mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT martincesar mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT berenguermarina mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT fabregatisabel mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT casadomarta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT peraltacarmen mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT varelareymarta mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals AT martinezchantarmarialuz mitochondrialbioenergeticsboostmacrophageactivationpromotingliverregenerationinmetabolicallycompromisedanimals |