Cargando…
Dirichlet composition distribution for compositional data with zero components: An application to fluorescence in situ hybridization (FISH) detection of chromosome
Zeros in compositional data are very common and can be classified into rounded and essential zeros. The rounded zero refers to a small proportion or below detection limit value, while the essential zero refers to the complete absence of the component in the composition. In this article, we propose a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300144/ https://www.ncbi.nlm.nih.gov/pubmed/34914842 http://dx.doi.org/10.1002/bimj.202000334 |
Sumario: | Zeros in compositional data are very common and can be classified into rounded and essential zeros. The rounded zero refers to a small proportion or below detection limit value, while the essential zero refers to the complete absence of the component in the composition. In this article, we propose a new framework for analyzing compositional data with zero entries by introducing a stochastic representation. In particular, a new distribution, namely the Dirichlet composition distribution, is developed to accommodate the possible essential‐zero feature in compositional data. We derive its distributional properties (e.g., its moments). The calculation of maximum likelihood estimates via the Expectation‐Maximization (EM) algorithm will be proposed. The regression model based on the new Dirichlet composition distribution will be considered. Simulation studies are conducted to evaluate the performance of the proposed methodologies. Finally, our method is employed to analyze a dataset of fluorescence in situ hybridization (FISH) for chromosome detection. |
---|