Cargando…

Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians

The whole‐body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with...

Descripción completa

Detalles Bibliográficos
Autores principales: Grigg, Gordon, Nowack, Julia, Bicudo, José Eduardo Pereira Wilken, Bal, Naresh Chandra, Woodward, Holly N., Seymour, Roger S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300183/
https://www.ncbi.nlm.nih.gov/pubmed/34894040
http://dx.doi.org/10.1111/brv.12822
_version_ 1784751153679958016
author Grigg, Gordon
Nowack, Julia
Bicudo, José Eduardo Pereira Wilken
Bal, Naresh Chandra
Woodward, Holly N.
Seymour, Roger S.
author_facet Grigg, Gordon
Nowack, Julia
Bicudo, José Eduardo Pereira Wilken
Bal, Naresh Chandra
Woodward, Holly N.
Seymour, Roger S.
author_sort Grigg, Gordon
collection PubMed
description The whole‐body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non‐shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole‐body endotherms. Indeed, recent research implies that BAT‐driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled ‘slippage’ of Ca(2+) from the sarcoplasmic reticulum Ca(2+)‐ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole‐body endothermy could even have pre‐dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole‐body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the ‘slippage’ is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi‐millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole‐body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four‐chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole‐body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole‐body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole‐body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
format Online
Article
Text
id pubmed-9300183
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-93001832022-07-21 Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians Grigg, Gordon Nowack, Julia Bicudo, José Eduardo Pereira Wilken Bal, Naresh Chandra Woodward, Holly N. Seymour, Roger S. Biol Rev Camb Philos Soc Original Articles The whole‐body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non‐shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole‐body endotherms. Indeed, recent research implies that BAT‐driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled ‘slippage’ of Ca(2+) from the sarcoplasmic reticulum Ca(2+)‐ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole‐body endothermy could even have pre‐dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole‐body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the ‘slippage’ is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi‐millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole‐body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four‐chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole‐body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole‐body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole‐body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy. Blackwell Publishing Ltd 2021-12-10 2022-04 /pmc/articles/PMC9300183/ /pubmed/34894040 http://dx.doi.org/10.1111/brv.12822 Text en © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Grigg, Gordon
Nowack, Julia
Bicudo, José Eduardo Pereira Wilken
Bal, Naresh Chandra
Woodward, Holly N.
Seymour, Roger S.
Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title_full Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title_fullStr Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title_full_unstemmed Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title_short Whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
title_sort whole‐body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300183/
https://www.ncbi.nlm.nih.gov/pubmed/34894040
http://dx.doi.org/10.1111/brv.12822
work_keys_str_mv AT grigggordon wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians
AT nowackjulia wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians
AT bicudojoseeduardopereirawilken wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians
AT balnareshchandra wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians
AT woodwardhollyn wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians
AT seymourrogers wholebodyendothermyancienthomologousandwidespreadamongtheancestorsofmammalsbirdsandcrocodylians