Cargando…
Vectorial Catalysis in Surface‐Anchored Nanometer‐Sized Metal–Organic Frameworks‐Based Microfluidic Devices
Vectorial catalysis—controlling multi‐step reactions in a programmed sequence and by defined spatial localization in a microscale device—is an enticing goal in bio‐inspired catalysis research. However, translating concepts from natural cascade biocatalysis into artificial hierarchical chemical syste...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300199/ https://www.ncbi.nlm.nih.gov/pubmed/34825766 http://dx.doi.org/10.1002/anie.202115100 |
Sumario: | Vectorial catalysis—controlling multi‐step reactions in a programmed sequence and by defined spatial localization in a microscale device—is an enticing goal in bio‐inspired catalysis research. However, translating concepts from natural cascade biocatalysis into artificial hierarchical chemical systems remains a challenge. Herein, we demonstrate integration of two different surface‐anchored nanometer‐sized metal–organic frameworks (MOFs) in a microfluidic device for modelling vectorial catalysis. Catalyst immobilization at defined sections along the microchannel and a two‐step cascade reaction was conducted with full conversion after 30 seconds and high turnover frequencies (TOF≈10(5) h(−1)). |
---|