Cargando…
Apoptotic and Antioxidant Activity of Gold Nanoparticles Synthesized Using Marine Brown Seaweed: An In Vitro Study
A major paradigm shift in the field of nanobiotechnology is the invention of an eco-friendly, economical, and green approach for synthesis of metal nanoparticles. In the present study, we have synthesized gold nanoparticles (AuNPs) using aqueous extracts of marine brown seaweed Sargassum longifolium...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300303/ https://www.ncbi.nlm.nih.gov/pubmed/35872865 http://dx.doi.org/10.1155/2022/5746761 |
Sumario: | A major paradigm shift in the field of nanobiotechnology is the invention of an eco-friendly, economical, and green approach for synthesis of metal nanoparticles. In the present study, we have synthesized gold nanoparticles (AuNPs) using aqueous extracts of marine brown seaweed Sargassum longifolium. The synthesized nanoparticle was subjected to characterization using different techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscope, scanning electron microscope, transmission electron microscope, and elemental dispersive X-ray diffraction. Further, the seaweed extract and the synthesized AuNPs were evaluated for its anticancer effect using MG-63 human osteosarcoma cells besides in vitro antioxidant effect. The formation of S. longifolium-mediated synthesis of gold nanoparticles was demonstrated by UV-Vis spectroscopy. Presence of elemental gold was confirmed by EDX analysis. TEM analysis demonstrated spherical morphology of the synthesized AuNPs and SEM analysis revealed the particle size to be in the range of 10-60 nm. The FTIR showed the presence of hydroxyl functional groups. The toxicity of S. longifolium extract and the synthesized AuNPs was tested using brine shrimp lethality assay at different concentrations with results showing both seaweed extract and AuNPs to be nontoxic. Both S. longifolium and AuNPs exhibited significant antioxidant activity by scavenging DPPH free radicals and H(2)O(2) radicals. Significant antiproliferative effect was observed against MG-63 osteosarcoma cells. It was also shown that the seaweed extract and the AuNPs induced cytotoxicity in cell lines by mechanism of apoptosis. In conclusion, this study provided insight on AuNPs synthesized from S. longifolium as a potent antioxidant and anticancer agent. |
---|