Cargando…
A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis
As a new generative model, the generative adversarial network (GAN) has great potential in the accuracy and efficiency of generating pseudoreal data. Nowadays, bearing fault diagnosis based on machine learning usually needs sufficient data. If enough near-real data can be generated in the case of in...
Autores principales: | Huo, Lin, Qi, Huanchao, Fei, Simiao, Guan, Cong, Li, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300344/ https://www.ncbi.nlm.nih.gov/pubmed/35875772 http://dx.doi.org/10.1155/2022/7592258 |
Ejemplares similares
-
A fault diagnosis method based on Auxiliary Classifier Generative Adversarial
Network for rolling bearing
por: Wu, Chunming, et al.
Publicado: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
por: Tang, Hongtao, et al.
Publicado: (2021) -
A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples
por: Peng, Cheng, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network
por: Yan, Jialin, et al.
Publicado: (2022)