Cargando…
Designing Deep Learning Hardware Accelerator and Efficiency Evaluation
With the swift development of deep learning applications, the convolutional neural network (CNN) has brought a tremendous challenge to traditional processors to fulfil computing requirements. It is urgent to embrace new strategies to improve efficiency and diminish energy consumption. Currently, div...
Autores principales: | Qi, Zhi, Chen, Weijian, Naqvi, Rizwan Ali, Siddique, Kamran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300348/ https://www.ncbi.nlm.nih.gov/pubmed/35875766 http://dx.doi.org/10.1155/2022/1291103 |
Ejemplares similares
-
A high-performance, hardware-based deep learning system for disease diagnosis
por: Siddique, Ali, et al.
Publicado: (2022) -
Hardware architectures for deep learning
por: Daneshtalab, Masoud, et al.
Publicado: (2020) -
Using deep learning techniques on hardware accelerators for particle identification studies in ProtoDUNE
por: Rodriguez, Manuel
Publicado: (2021) -
Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware
por: Sim, Hyeonuk, et al.
Publicado: (2020) -
Learning automata based energy-efficient AI hardware design for IoT applications
por: Wheeldon, Adrian, et al.
Publicado: (2020)