Cargando…
A hybrid random forest deep learning classifier empowered edge cloud architecture for COVID-19 and pneumonia detection
COVID-19 is a global pandemic that mostly affects patients' respiratory systems, and the only way to protect oneself against the virus at present moment is to diagnose the illness, isolate the patient, and provide immunization. In the present situation, the testing used to predict COVID-19 is i...
Autor principal: | Hemalatha, M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300559/ https://www.ncbi.nlm.nih.gov/pubmed/35880010 http://dx.doi.org/10.1016/j.eswa.2022.118227 |
Ejemplares similares
-
Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
por: Singh, Vipul Kumar, et al.
Publicado: (2021) -
Practical Deep Learning for Cloud, Mobile, and Edge
por: Koul, Anirudh
Publicado: (2019) -
Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges
por: Bao, Guanming, et al.
Publicado: (2022) -
ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection †
por: Yaqoob, Muhammad Kashif, et al.
Publicado: (2021) -
Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
por: Chen, Zhen, et al.
Publicado: (2018)