Cargando…

Transition of a small Himalayan glacier lake outburst flood to a giant transborder flood and debris flow

Glacial lake outburst floods (GLOFs) are a great concern for the Himalaya, as they can severely damage downstream populations and infrastructures. These floods originate at high altitudes and can flow down with enormous energy and change the terrain’s existing morphology. One such devastating event...

Descripción completa

Detalles Bibliográficos
Autores principales: Sattar, Ashim, Haritashya, Umesh K., Kargel, Jeffrey S., Karki, Alina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300610/
https://www.ncbi.nlm.nih.gov/pubmed/35858949
http://dx.doi.org/10.1038/s41598-022-16337-6
Descripción
Sumario:Glacial lake outburst floods (GLOFs) are a great concern for the Himalaya, as they can severely damage downstream populations and infrastructures. These floods originate at high altitudes and can flow down with enormous energy and change the terrain’s existing morphology. One such devastating event occurred on the night of 5 July 2016, from the inconspicuous Gongbatongsha Lake, located in the Poiqu basin, Eastern Himalaya. The Poiqu basin in the Tibetan Autonomous Region currently contains numerous big glacial lakes; however, this event originated from a small lake. The GLOF was triggered following heavy precipitation that led to a slope failure above the lake and deposition of debris into the lake, which breached the moraine dam and rapidly drained the entire lake. The flood damaged several downstream infrastructures, including the Arniko highway, the Upper Bhotekoshi hydropower plant, and several buildings as it made its way into the Bhotekoshi basin in Nepal. This study adopts a multi-model approach to reconstruct the GLOF trigger and the flood’s transformation into a severe debris flow. Proxies including flow discharge, flow velocity, runout distances were used to calibrate the model and validate the results. Results reveal that a debris flow of volume ranging between 3000 and 6000 m(3) from the headwall must have led to lake overfill, eventually leading to the GLOF event. The GLOF showed a significant increase in peak discharge from 618 to 4123 m(3) s(−1) at the Zhangzangbo-Bhotekoshi confluence. The average velocity of the flow is calculated to be ~ 5.5 m s(−1). Reconstruction of the erosion and deposition dynamics show that maximum erosion occurred in the first 6.5 km, with maximum deposition occurring near the Upper Bhotekoshi hydropower station. The modeling indicates that the availability of the entrainable debris along the channel, likely from the previous landslides, amplified the event by three orders of magnitude-additional water ingested from the river. Overall, we demonstrate how the small-scale Gongbatongsha GLOF amplified downstream by incorporating pre-existing sediment in the valley and triggered damaging secondary landslides leading to an economic loss of > 70 million USD.