Cargando…

The NMDA receptor antagonist ketamine impairs and delays context-dependent decision making in the parietal cortex

Flexible decision making is an indispensable ability for humans. A subanesthetic dose of ketamine, an N-methyl-D-aspartate receptor antagonist, impairs this flexibility in a manner that is similar to patients with schizophrenia; however how it affects neural processes related to decision making rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Suda, Yuki, Uka, Takanori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300646/
https://www.ncbi.nlm.nih.gov/pubmed/35858997
http://dx.doi.org/10.1038/s42003-022-03626-z
Descripción
Sumario:Flexible decision making is an indispensable ability for humans. A subanesthetic dose of ketamine, an N-methyl-D-aspartate receptor antagonist, impairs this flexibility in a manner that is similar to patients with schizophrenia; however how it affects neural processes related to decision making remains unclear. Here, we report that ketamine administration impairs neural processing related to context-dependent decision making, and delays the onset of decision making. We recorded single unit activity in the lateral intraparietal area (LIP) while monkeys switched between a direction-discrimination task and a depth-discrimination task. Ketamine impaired choice accuracy for incongruent stimuli that required different decisions depending on the task, for the direction-discrimination task. Neural sensitivity to irrelevant depth information increased with ketamine during direction discrimination in LIP, indicating impaired processing of irrelevant information. Furthermore, the onset of decision-related neural activity was delayed in conjunction with an increased reaction time irrespective of task and stimulus congruency. Neural sensitivity and response onset of the middle temporal area (MT) were not modulated by ketamine, indicating that ketamine worked on neural decision processes downstream of MT. These results suggest that ketamine administration may impair what information to process and when to process it for the purpose of achieving flexible decision making.