Cargando…
Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome
GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunit...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300760/ https://www.ncbi.nlm.nih.gov/pubmed/35675825 http://dx.doi.org/10.1016/j.ajhg.2022.05.009 |
_version_ | 1784751285351743488 |
---|---|
author | Ismail, Vardha Zachariassen, Linda G. Godwin, Annie Sahakian, Mane Ellard, Sian Stals, Karen L. Baple, Emma Brown, Kate Tatton Foulds, Nicola Wheway, Gabrielle Parker, Matthew O. Lyngby, Signe M. Pedersen, Miriam G. Desir, Julie Bayat, Allan Musgaard, Maria Guille, Matthew Kristensen, Anders S. Baralle, Diana |
author_facet | Ismail, Vardha Zachariassen, Linda G. Godwin, Annie Sahakian, Mane Ellard, Sian Stals, Karen L. Baple, Emma Brown, Kate Tatton Foulds, Nicola Wheway, Gabrielle Parker, Matthew O. Lyngby, Signe M. Pedersen, Miriam G. Desir, Julie Bayat, Allan Musgaard, Maria Guille, Matthew Kristensen, Anders S. Baralle, Diana |
author_sort | Ismail, Vardha |
collection | PubMed |
description | GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F(0) models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function. |
format | Online Article Text |
id | pubmed-9300760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-93007602022-07-22 Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome Ismail, Vardha Zachariassen, Linda G. Godwin, Annie Sahakian, Mane Ellard, Sian Stals, Karen L. Baple, Emma Brown, Kate Tatton Foulds, Nicola Wheway, Gabrielle Parker, Matthew O. Lyngby, Signe M. Pedersen, Miriam G. Desir, Julie Bayat, Allan Musgaard, Maria Guille, Matthew Kristensen, Anders S. Baralle, Diana Am J Hum Genet Article GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F(0) models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function. Elsevier 2022-07-07 2022-06-07 /pmc/articles/PMC9300760/ /pubmed/35675825 http://dx.doi.org/10.1016/j.ajhg.2022.05.009 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ismail, Vardha Zachariassen, Linda G. Godwin, Annie Sahakian, Mane Ellard, Sian Stals, Karen L. Baple, Emma Brown, Kate Tatton Foulds, Nicola Wheway, Gabrielle Parker, Matthew O. Lyngby, Signe M. Pedersen, Miriam G. Desir, Julie Bayat, Allan Musgaard, Maria Guille, Matthew Kristensen, Anders S. Baralle, Diana Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title | Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title_full | Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title_fullStr | Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title_full_unstemmed | Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title_short | Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome |
title_sort | identification and functional evaluation of gria1 missense and truncation variants in individuals with id: an emerging neurodevelopmental syndrome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300760/ https://www.ncbi.nlm.nih.gov/pubmed/35675825 http://dx.doi.org/10.1016/j.ajhg.2022.05.009 |
work_keys_str_mv | AT ismailvardha identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT zachariassenlindag identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT godwinannie identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT sahakianmane identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT ellardsian identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT stalskarenl identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT bapleemma identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT brownkatetatton identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT fouldsnicola identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT whewaygabrielle identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT parkermatthewo identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT lyngbysignem identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT pedersenmiriamg identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT desirjulie identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT bayatallan identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT musgaardmaria identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT guillematthew identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT kristensenanderss identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome AT barallediana identificationandfunctionalevaluationofgria1missenseandtruncationvariantsinindividualswithidanemergingneurodevelopmentalsyndrome |