Cargando…

Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients

BACKGROUND: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray...

Descripción completa

Detalles Bibliográficos
Autores principales: De Saint-Hubert, Marijke, Suesselbeck, Finja, Vasi, Fabiano, Stuckmann, Florian, Rodriguez, Miguel, Dabin, Jérémie, Timmermann, Beate, Thierry-Chef, Isabelle, Schneider, Uwe, Brualla, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300838/
https://www.ncbi.nlm.nih.gov/pubmed/35875147
http://dx.doi.org/10.3389/fonc.2022.882506
_version_ 1784751293503373312
author De Saint-Hubert, Marijke
Suesselbeck, Finja
Vasi, Fabiano
Stuckmann, Florian
Rodriguez, Miguel
Dabin, Jérémie
Timmermann, Beate
Thierry-Chef, Isabelle
Schneider, Uwe
Brualla, Lorenzo
author_facet De Saint-Hubert, Marijke
Suesselbeck, Finja
Vasi, Fabiano
Stuckmann, Florian
Rodriguez, Miguel
Dabin, Jérémie
Timmermann, Beate
Thierry-Chef, Isabelle
Schneider, Uwe
Brualla, Lorenzo
author_sort De Saint-Hubert, Marijke
collection PubMed
description BACKGROUND: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed—one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. MATERIALS AND METHODS: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x10(9) histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. RESULTS: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. CONCLUSIONS: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.
format Online
Article
Text
id pubmed-9300838
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93008382022-07-22 Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients De Saint-Hubert, Marijke Suesselbeck, Finja Vasi, Fabiano Stuckmann, Florian Rodriguez, Miguel Dabin, Jérémie Timmermann, Beate Thierry-Chef, Isabelle Schneider, Uwe Brualla, Lorenzo Front Oncol Oncology BACKGROUND: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed—one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. MATERIALS AND METHODS: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x10(9) histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. RESULTS: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. CONCLUSIONS: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV. Frontiers Media S.A. 2022-07-07 /pmc/articles/PMC9300838/ /pubmed/35875147 http://dx.doi.org/10.3389/fonc.2022.882506 Text en Copyright © 2022 De Saint-Hubert, Suesselbeck, Vasi, Stuckmann, Rodriguez, Dabin, Timmermann, Thierry-Chef, Schneider and Brualla https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
De Saint-Hubert, Marijke
Suesselbeck, Finja
Vasi, Fabiano
Stuckmann, Florian
Rodriguez, Miguel
Dabin, Jérémie
Timmermann, Beate
Thierry-Chef, Isabelle
Schneider, Uwe
Brualla, Lorenzo
Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title_full Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title_fullStr Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title_full_unstemmed Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title_short Experimental Validation of an Analytical Program and a Monte Carlo Simulation for the Computation of the Far Out-of-Field Dose in External Beam Photon Therapy Applied to Pediatric Patients
title_sort experimental validation of an analytical program and a monte carlo simulation for the computation of the far out-of-field dose in external beam photon therapy applied to pediatric patients
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300838/
https://www.ncbi.nlm.nih.gov/pubmed/35875147
http://dx.doi.org/10.3389/fonc.2022.882506
work_keys_str_mv AT desainthubertmarijke experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT suesselbeckfinja experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT vasifabiano experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT stuckmannflorian experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT rodriguezmiguel experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT dabinjeremie experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT timmermannbeate experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT thierrychefisabelle experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT schneideruwe experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients
AT bruallalorenzo experimentalvalidationofananalyticalprogramandamontecarlosimulationforthecomputationofthefaroutoffielddoseinexternalbeamphotontherapyappliedtopediatricpatients