Cargando…
Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation
Light traps have been widely used as effective tools to monitor multiple agricultural and forest insect pests simultaneously. However, the current detection methods of pests from light trapping images have several limitations, such as exhibiting extremely imbalanced class distribution, occlusion amo...
Autores principales: | Lv, Jiawei, Li, Wenyong, Fan, Mingyuan, Zheng, Tengfei, Yang, Zhankui, Chen, Yaocong, He, Guohuang, Yang, Xinting, Liu, Shuangyin, Sun, Chuanheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301456/ https://www.ncbi.nlm.nih.gov/pubmed/35873992 http://dx.doi.org/10.3389/fpls.2022.939498 |
Ejemplares similares
-
Detection of Small-Sized Insects in Sticky Trapping Images Using Spectral Residual Model and Machine Learning
por: Li, Wenyong, et al.
Publicado: (2022) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022) -
Bass detection model based on improved YOLOv5 in circulating water system
por: Xu, Longqin, et al.
Publicado: (2023) -
Trusted-auditing chain: A security blockchain prototype used in agriculture traceability
por: Lei, Moyixi, et al.
Publicado: (2022) -
A YOLOv7 incorporating the Adan optimizer based corn pests identification method
por: Zhang, Chong, et al.
Publicado: (2023)