Cargando…
Sparse Hierarchical Representation Learning on Functional Brain Networks for Prediction of Autism Severity Levels
Machine learning algorithms have been widely applied in diagnostic tools for autism spectrum disorder (ASD), revealing an altered brain connectivity. However, little is known about whether an magnetic resonance imaging (MRI)-based brain network is related to the severity of ASD symptoms in a large-s...
Autores principales: | Kwon, Hyeokjin, Kim, Johanna Inhyang, Son, Seung-Yeon, Jang, Yong Hun, Kim, Bung-Nyun, Lee, Hyun Ju, Lee, Jong-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301472/ https://www.ncbi.nlm.nih.gov/pubmed/35873817 http://dx.doi.org/10.3389/fnins.2022.935431 |
Ejemplares similares
-
Altered Cerebral Curvature in Preterm Infants Is Associated with the Common Genetic Variation Related to Autism Spectrum Disorder and Lipid Metabolism
por: Kim, Hyuna, et al.
Publicado: (2022) -
Reliability and Validity of a New Comprehensive Tool for Assessing Challenging Behaviors in Autism Spectrum Disorder
por: Kim, Johanna Inhyang, et al.
Publicado: (2018) -
PM340. A resting-state functional magnetic resonance imaging investigation of the effectiveness of an anti-bullying intervention for adolescent perpetrators
por: Kim, Bung-Nyun, et al.
Publicado: (2016) -
The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age
por: Lee, Hyun Ju, et al.
Publicado: (2020) -
Alterations in Social Brain Network Topology at Rest in Children With Autism Spectrum Disorder
por: Yoon, Narae, et al.
Publicado: (2022)