Cargando…
Deep Denoising of Raw Biomedical Knowledge Graph From COVID-19 Literature, LitCovid, and Pubtator: Framework Development and Validation
BACKGROUND: Multiple types of biomedical associations of knowledge graphs, including COVID-19–related ones, are constructed based on co-occurring biomedical entities retrieved from recent literature. However, the applications derived from these raw graphs (eg, association predictions among genes, dr...
Autores principales: | Jiang, Chao, Ngo, Victoria, Chapman, Richard, Yu, Yue, Liu, Hongfang, Jiang, Guoqian, Zong, Nansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301549/ https://www.ncbi.nlm.nih.gov/pubmed/35658098 http://dx.doi.org/10.2196/38584 |
Ejemplares similares
-
LitCovid: an open database of COVID-19 literature
por: Chen, Qingyu, et al.
Publicado: (2020) -
LitCovid ensemble learning for COVID-19 multi-label classification
por: Gu, Jinghang, et al.
Publicado: (2022) -
Features and Limitations of LitCovid Hub for Quick Access to Literature About COVID-19
por: Arab-Zozani, Morteza, et al.
Publicado: (2020) -
LitCovid-AGAC: cellular and molecular level annotation data set based on COVID-19
por: Ouyang, Sizhuo, et al.
Publicado: (2021) -
LitCovid, iSearch COVID-19 portfolio, and COVID-19 Global literature on coronavirus disease
por: Scheinfeld, Laurel
Publicado: (2022)