Cargando…

HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure

[Image: see text] Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circul...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhat, Sajad Ahmad, Kazim, Syed Naqui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301636/
https://www.ncbi.nlm.nih.gov/pubmed/35874215
http://dx.doi.org/10.1021/acsomega.2c02216
_version_ 1784751461304893440
author Bhat, Sajad Ahmad
Kazim, Syed Naqui
author_facet Bhat, Sajad Ahmad
Kazim, Syed Naqui
author_sort Bhat, Sajad Ahmad
collection PubMed
description [Image: see text] Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus’ biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
format Online
Article
Text
id pubmed-9301636
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93016362022-07-22 HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure Bhat, Sajad Ahmad Kazim, Syed Naqui ACS Omega [Image: see text] Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus’ biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review. American Chemical Society 2022-07-07 /pmc/articles/PMC9301636/ /pubmed/35874215 http://dx.doi.org/10.1021/acsomega.2c02216 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Bhat, Sajad Ahmad
Kazim, Syed Naqui
HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title_full HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title_fullStr HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title_full_unstemmed HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title_short HBV cccDNA—A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure
title_sort hbv cccdna—a culprit and stumbling block for the hepatitis b virus infection: its presence in hepatocytes perplexed the possible mission for a functional cure
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301636/
https://www.ncbi.nlm.nih.gov/pubmed/35874215
http://dx.doi.org/10.1021/acsomega.2c02216
work_keys_str_mv AT bhatsajadahmad hbvcccdnaaculpritandstumblingblockforthehepatitisbvirusinfectionitspresenceinhepatocytesperplexedthepossiblemissionforafunctionalcure
AT kazimsyednaqui hbvcccdnaaculpritandstumblingblockforthehepatitisbvirusinfectionitspresenceinhepatocytesperplexedthepossiblemissionforafunctionalcure