Cargando…
Compositional Modeling of the Oil Formation Volume Factor of Crude Oil Systems: Application of Intelligent Models and Equations of State
[Image: see text] This communication primarily concentrates on developing reliable and accurate compositional oil formation volume factor (B(o)) models using several advanced and powerful machine learning (ML) models, namely, extra trees (ETs), random forest (RF), decision trees (DTs), generalized r...
Autores principales: | Larestani, Aydin, Hemmati-Sarapardeh, Abdolhossein, Samari, Zahra, Ostadhassan, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301644/ https://www.ncbi.nlm.nih.gov/pubmed/35874223 http://dx.doi.org/10.1021/acsomega.2c01466 |
Ejemplares similares
-
Applications of artificial intelligence techniques in the petroleum industry
por: Hemmat-Sarapardeh, Abdolhossein, et al.
Publicado: (2020) -
Modelling rate of penetration in drilling operations using RBF, MLP, LSSVM, and DT models
por: Riazi, Mohsen, et al.
Publicado: (2022) -
Optimization of reaction temperature and Ni–W–Mo catalyst soaking time in oil upgrading: application to kinetic modeling of in-situ upgrading
por: Abdi-Khanghah, Mahdi, et al.
Publicado: (2023) -
Stable Isotope Geochemistry of the Organic Elements within Shales and Crude Oils: A Comprehensive Review
por: Ogbesejana, Abiodun Busuyi, et al.
Publicado: (2021) -
Modeling solubility of CO(2)–N(2) gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022)