Cargando…
Hyperparameter Tuning of Artificial Neural Networks for Well Production Estimation Considering the Uncertainty in Initialized Parameters
[Image: see text] A well production rate is an essential parameter in oil and gas field development. Traditional models have limitations for the well production rate estimation, e.g., numerical simulations are computation-expensive, and empirical models are based on oversimplified assumptions. An ar...
Autores principales: | Jin, Miao, Liao, Qinzhuo, Patil, Shirish, Abdulraheem, Abdulazeez, Al-Shehri, Dhafer, Glatz, Guenther |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301647/ https://www.ncbi.nlm.nih.gov/pubmed/35874233 http://dx.doi.org/10.1021/acsomega.2c00498 |
Ejemplares similares
-
A Hyperparameter Tuning Approach for an Online Log Parser
por: Marlaithong, Tinnakorn, et al.
Publicado: (2021) -
Optimal Tuning of Random Survival Forest Hyperparameter with an Application to Liver Disease
por: Dauda, Kazeem Adesina
Publicado: (2022) -
Taming hyperparameter tuning in continuous normalizing flows using the JKO scheme
por: Vidal, Alexander, et al.
Publicado: (2023) -
Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing
por: Zhang, Fan, et al.
Publicado: (2021) -
Hybrid XGBoost model with hyperparameter tuning for prediction of liver disease with better accuracy
por: Dalal, Surjeet, et al.
Publicado: (2022)