Cargando…
Preparation of NaF Microcapsules for High-Temperature Thermal Storage
[Image: see text] A novel NaF phase change microcapsule with a carbon shell (NaF@C microcapsule) was prepared by a simple approach. The carbon shell was synthesized by carbonization of a resole-type phenolic resin shell, which was encapsulated onto the surface of NaF particles by a simple phase sepa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301709/ https://www.ncbi.nlm.nih.gov/pubmed/35874255 http://dx.doi.org/10.1021/acsomega.2c02539 |
Sumario: | [Image: see text] A novel NaF phase change microcapsule with a carbon shell (NaF@C microcapsule) was prepared by a simple approach. The carbon shell was synthesized by carbonization of a resole-type phenolic resin shell, which was encapsulated onto the surface of NaF particles by a simple phase separation process induced by tetraethoxysilane. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis were used to characterize the morphology, composition, crystal phase, and thermal properties of the microcapsules. The size of the NaF@C microcapsule was 3–5 μm with a core–shell structure. DSC results showed that the melting point of the prepared NaF@C microcapsule was 988 °C, and the enthalpy value was 192 J/g. The prepared NaF@C microcapsules retained the powder morphology after 30 times of heat treatment at 1100 °C, with no NaF leakage detected, and the micromorphology remained stable, presenting good thermal stability. The NaF@C microcapsules can be used in the fields of thermal protection and thermal management in extreme high-temperature environments such as aerospace and solar energy. |
---|