Cargando…
Deep learning in fNIRS: a review
SIGNIFICANCE: Optical neuroimaging has become a well-established clinical and research tool to monitor cortical activations in the human brain. It is notable that outcomes of functional near-infrared spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and classification model...
Autores principales: | Eastmond, Condell, Subedi, Aseem, De, Suvranu, Intes, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301871/ https://www.ncbi.nlm.nih.gov/pubmed/35874933 http://dx.doi.org/10.1117/1.NPh.9.4.041411 |
Ejemplares similares
-
Deep learning-based motion artifact removal in functional near-infrared spectroscopy
por: Gao, Yuanyuan, et al.
Publicado: (2022) -
Special Section Guest Editorial: Computational Approaches for Neuroimaging
por: Tian, Lei, et al.
Publicado: (2022) -
Using fNIRS to evaluate ADHD medication effects on neuronal activity: A systematic literature review
por: Poliakova, Eva, et al.
Publicado: (2023) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Review of data processing of functional optical microscopy for neuroscience
por: Benisty, Hadas, et al.
Publicado: (2022)