Cargando…

Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications

[Image: see text] Silicon nanoparticles (SiNPs) have been explored intensively for their use in applications requiring efficient fluorescence for LEDs, lasers, displays, photovoltaic spectral-shifting filters, and biomedical applications. High radiative rates are essential for such applications, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Goyal, Ankit, van der Laan, Marco, Troglia, Alessandro, Lin, Min, Agarwal, Harshal, van de Groep, Jorik, Bliem, Roland, Paulusse, Jos M. J., Schall, Peter, Dohnalova, Katerina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301942/
https://www.ncbi.nlm.nih.gov/pubmed/35874190
http://dx.doi.org/10.1021/acsomega.2c03396
_version_ 1784751527796146176
author Goyal, Ankit
van der Laan, Marco
Troglia, Alessandro
Lin, Min
Agarwal, Harshal
van de Groep, Jorik
Bliem, Roland
Paulusse, Jos M. J.
Schall, Peter
Dohnalova, Katerina
author_facet Goyal, Ankit
van der Laan, Marco
Troglia, Alessandro
Lin, Min
Agarwal, Harshal
van de Groep, Jorik
Bliem, Roland
Paulusse, Jos M. J.
Schall, Peter
Dohnalova, Katerina
author_sort Goyal, Ankit
collection PubMed
description [Image: see text] Silicon nanoparticles (SiNPs) have been explored intensively for their use in applications requiring efficient fluorescence for LEDs, lasers, displays, photovoltaic spectral-shifting filters, and biomedical applications. High radiative rates are essential for such applications, and theoretically these could be achieved via quantum confinement and/or straining. Wet-chemical methods used to synthesize SiNPs are under scrutiny because of reported contamination by fluorescent carbon species. To develop a cleaner method, we utilize a specially designed attritor type high-energy ball-mill and use a high-purity (99.999%) Si microparticle precursor. The mechanochemical process is used under a continuous nitrogen gas atmosphere to avoid oxidation of the particles. We confirm the presence of quantum-confined NPs (<5 nm) using atomic force microscopy (AFM). Microphotoluminescence (PL) spectroscopy coupled to AFM confirms quantum-confined tunable red/near-infrared PL emission in SiNPs capped with an organic ligand (1-octene). Using micro-Raman-PL spectroscopy, we confirm SiNPs as the origin of the emission. These results demonstrate a facile and potentially scalable mechanochemical method of synthesis for contamination-free SiNPs.
format Online
Article
Text
id pubmed-9301942
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93019422022-07-22 Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications Goyal, Ankit van der Laan, Marco Troglia, Alessandro Lin, Min Agarwal, Harshal van de Groep, Jorik Bliem, Roland Paulusse, Jos M. J. Schall, Peter Dohnalova, Katerina ACS Omega [Image: see text] Silicon nanoparticles (SiNPs) have been explored intensively for their use in applications requiring efficient fluorescence for LEDs, lasers, displays, photovoltaic spectral-shifting filters, and biomedical applications. High radiative rates are essential for such applications, and theoretically these could be achieved via quantum confinement and/or straining. Wet-chemical methods used to synthesize SiNPs are under scrutiny because of reported contamination by fluorescent carbon species. To develop a cleaner method, we utilize a specially designed attritor type high-energy ball-mill and use a high-purity (99.999%) Si microparticle precursor. The mechanochemical process is used under a continuous nitrogen gas atmosphere to avoid oxidation of the particles. We confirm the presence of quantum-confined NPs (<5 nm) using atomic force microscopy (AFM). Microphotoluminescence (PL) spectroscopy coupled to AFM confirms quantum-confined tunable red/near-infrared PL emission in SiNPs capped with an organic ligand (1-octene). Using micro-Raman-PL spectroscopy, we confirm SiNPs as the origin of the emission. These results demonstrate a facile and potentially scalable mechanochemical method of synthesis for contamination-free SiNPs. American Chemical Society 2022-07-08 /pmc/articles/PMC9301942/ /pubmed/35874190 http://dx.doi.org/10.1021/acsomega.2c03396 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Goyal, Ankit
van der Laan, Marco
Troglia, Alessandro
Lin, Min
Agarwal, Harshal
van de Groep, Jorik
Bliem, Roland
Paulusse, Jos M. J.
Schall, Peter
Dohnalova, Katerina
Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title_full Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title_fullStr Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title_full_unstemmed Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title_short Microscopic Proof of Photoluminescence from Mechanochemically Synthesized 1-Octene-Capped Quantum-Confined Silicon Nanoparticles: Implications for Light-Emission Applications
title_sort microscopic proof of photoluminescence from mechanochemically synthesized 1-octene-capped quantum-confined silicon nanoparticles: implications for light-emission applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301942/
https://www.ncbi.nlm.nih.gov/pubmed/35874190
http://dx.doi.org/10.1021/acsomega.2c03396
work_keys_str_mv AT goyalankit microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT vanderlaanmarco microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT trogliaalessandro microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT linmin microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT agarwalharshal microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT vandegroepjorik microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT bliemroland microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT paulussejosmj microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT schallpeter microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications
AT dohnalovakaterina microscopicproofofphotoluminescencefrommechanochemicallysynthesized1octenecappedquantumconfinedsiliconnanoparticlesimplicationsforlightemissionapplications