Cargando…

Synthesis, Mesomorphism, Photophysics, and Device Properties of Liquid-Crystalline Pincer Complexes of Gold(III) Containing Semiperfluorinated Chains

[Image: see text] Gold(III) complexes of C(∧)N(∧)C-coordinating 2,6-diphenylpyridine pincer ligands with arylacetylide co-ligands are known triplet emitters at room temperature. We have reported previously that by functionalizing both the pincer ligand and the phenylacetylene with alkoxy chains, liq...

Descripción completa

Detalles Bibliográficos
Autores principales: Parker, Rachel R., Stracey, Rachel F., McEllin, Alice J., Chen, Xinrui, Wang, Yafei, Williams, J. A. Gareth, Lynam, Jason M., Bruce, Duncan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301954/
https://www.ncbi.nlm.nih.gov/pubmed/35874197
http://dx.doi.org/10.1021/acsomega.2c03669
Descripción
Sumario:[Image: see text] Gold(III) complexes of C(∧)N(∧)C-coordinating 2,6-diphenylpyridine pincer ligands with arylacetylide co-ligands are known triplet emitters at room temperature. We have reported previously that by functionalizing both the pincer ligand and the phenylacetylene with alkoxy chains, liquid crystallinity may be induced, with the complexes showing columnar mesophases. We now report new derivatives in which the phenylacetylene incorporates one, two, or three 1H,1H,2H,2H-perfluoroalkyl chains. In terms of intermolecular interactions, solution (1)H NMR experiments suggest that the semiperfluoroalkyl chains promote a parallel, head-to-head arrangement of neighboring molecules relative to one another, rather than the anti-parallel, head-to-tail orientation found for the all-hydrocarbon materials. In terms of the liquid crystal properties, the complexes show columnar phases, with the addition of the more rigid fluorocarbon chains leading to a stabilization of both the crystal and liquid crystal mesophases. Mesophase temperature ranges were also wider. Interestingly, the amphiphilic nature of these complexes is evident through the observation of a frustrated columnar nematic phase between a Col(r) and a Col(h) phase, an observation recently reported in detail for one compound (Liq. Cryst., 2022, doi: 10.1080/02678292.2021.1991017). While calculation shows that, despite the “electronic insulation” provided by the dimethylene spacer group in the semiperfluoroalkyl chains, a small hypsochromic shift in one component of the absorption band is anticipated, experimentally this effect is not observed in the overall absorption envelope. Complexes with substituents in the 3,3′,4,4′-positions of the phenyl rings of the pincer ligand once more show higher-luminescence quantum yields than the analogues with substituents in the 4,4′-positions only, associated with the lower-energy-emissive state in the former. However, in contrast to the observations with all-hydrocarbon analogues, the luminescence quantum yield of the complexes with 3,3′,4,4′-substitution on the pincer increases as the number of semiperfluoroalkyl chains on the phenylacetylide increases, from 20% (one chain) to 34% (three chains). External quantum efficiencies in fabricated OLED devices are, however, low, attributed to the poor dispersion in the host materials on account of the fluorinated chains.