Cargando…
Hybrid machine learning to localize atrial flutter substrates using the surface 12-lead electrocardiogram
AIMS: Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior kno...
Autores principales: | Luongo, Giorgio, Vacanti, Gaetano, Nitzke, Vincent, Nairn, Deborah, Nagel, Claudia, Kabiri, Diba, Almeida, Tiago P, Soriano, Diogo C, Rivolta, Massimo W, Ng, Ghulam André, Dössel, Olaf, Luik, Armin, Sassi, Roberto, Schmitt, Claus, Loewe, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301972/ https://www.ncbi.nlm.nih.gov/pubmed/35045172 http://dx.doi.org/10.1093/europace/euab322 |
Ejemplares similares
-
Patient-Specific Identification of Atrial Flutter Vulnerability–A Computational Approach to Reveal Latent Reentry Pathways
por: Loewe, Axel, et al.
Publicado: (2019) -
Atrial Flutter Mechanism Detection Using Directed Network Mapping
por: Vila, Muhamed, et al.
Publicado: (2021) -
Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG
por: Luongo, Giorgio, et al.
Publicado: (2021) -
Basket-Type Catheters: Diagnostic Pitfalls Caused by Deformation and Limited Coverage
por: Oesterlein, Tobias, et al.
Publicado: (2016) -
Machine Learning Using a Single-Lead ECG to Identify Patients With Atrial Fibrillation-Induced Heart Failure
por: Luongo, Giorgio, et al.
Publicado: (2022)