Cargando…
A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images
PURPOSE: The purpose of this study was to explore the performance of different parameter combinations of deep learning (DL) models (Xception, DenseNet121, MobileNet, ResNet50 and EfficientNetB0) and input image resolutions (REZs) (224 × 224, 320 × 320 and 488 × 488 pixels) for breast cancer diagnosi...
Autores principales: | Wu, Huaiyu, Ye, Xiuqin, Jiang, Yitao, Tian, Hongtian, Yang, Keen, Cui, Chen, Shi, Siyuan, Liu, Yan, Huang, Sijing, Chen, Jing, Xu, Jinfeng, Dong, Fajin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302001/ https://www.ncbi.nlm.nih.gov/pubmed/35875151 http://dx.doi.org/10.3389/fonc.2022.869421 |
Ejemplares similares
-
The effect of image resolution on convolutional neural networks in breast ultrasound
por: Tang, Shuzhen, et al.
Publicado: (2023) -
Feasibility of using AI to auto-catch responsible frames in ultrasound screening for breast cancer diagnosis
por: Chen, Jing, et al.
Publicado: (2022) -
S-Thyroid Computer-Aided Diagnosis Ultrasound System of Thyroid Nodules: Correlation Between Transverse and Longitudinal Planes
por: Yang, Keen, et al.
Publicado: (2022) -
Artificial intelligence for non-mass breast lesions detection and classification on ultrasound images: a comparative study
por: Li, Guoqiu, et al.
Publicado: (2023) -
Development and validation of a nomogram for predicting prostate cancer in men with prostate-specific antigen grey zone based on retrospective analysis of clinical and multi-parameter magnetic resonance imaging/transrectal ultrasound fusion-derived data
por: Ding, Zhimin, et al.
Publicado: (2020)