Cargando…

Comparison of pharmaceutical removal in two membrane bioreactors with/without powdered activated carbon addition

The present study investigates the removal of six selected pharmaceuticals from municipal wastewater in two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. Two approaches were carried out for obtaining different carbon dosages related to the influent: (1) with...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ya-Ting, Xia, Qing, Huang, Wei-Wei, Yi, Xue-Song, Dong, Li-Li, Yang, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302323/
https://www.ncbi.nlm.nih.gov/pubmed/35919144
http://dx.doi.org/10.1039/d2ra01686a
Descripción
Sumario:The present study investigates the removal of six selected pharmaceuticals from municipal wastewater in two membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. Two approaches were carried out for obtaining different carbon dosages related to the influent: (1) with a fixed solids retention time (SRT) and varying PAC concentrations; (2) with varying SRTs and a fixed PAC concentration. The results reveal that a PAC dosage related to influent of 21 mg L(−1) and SRT of 20 d are optimal. The first approach achieved a better removal performance than the second. The removal of amidotrizoic acid (up to 46%), bezafibrate (>92%) and iopromide (around 85%) were mainly caused by biological process, but were also enhanced by PAC addition. Efficient removal (>95%) of sulfamethoxazole, carbamazepine and diclofenac were highly dependent on the PAC dosage. However, carbamazepine shows re-metabolization properties during biological processing. Decreasing the SRT as done in the second approach, not only increased the PAC amount, but also decreased the mass of activated sludge and reduced the capability to degrade complex organic matter. Consequently, biodegradability and adsorbability played decisive roles in the removal of each compound.