Cargando…
Evaluating the COVID-19 Identification ResNet (CIdeR) on the INTERSPEECH COVID-19 From Audio Challenges
Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of COVID-19 has been proposed recently as digital mass testing methods. Although these classifiers have shown strong performances on the datasets on which they are trained, their methodological adaptation to new datasets...
Autores principales: | Akman, Alican, Coppock, Harry, Gaskell, Alexander, Tzirakis, Panagiotis, Jones, Lyn, Schuller, Björn W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302571/ https://www.ncbi.nlm.nih.gov/pubmed/35873349 http://dx.doi.org/10.3389/fdgth.2022.789980 |
Ejemplares similares
-
A summary of the ComParE COVID-19 challenges
por: Coppock, Harry, et al.
Publicado: (2023) -
CIDeR: multifactorial interaction networks in human diseases
por: Lechner, Martin, et al.
Publicado: (2012) -
COVID-19 detection from audio: seven grains of salt
por: Coppock, Harry, et al.
Publicado: (2021) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
Classification of lungs infected COVID-19 images based on inception-ResNet
por: Chen, Yunfeng, et al.
Publicado: (2022)