Cargando…
Predicting compound-protein interaction using hierarchical graph convolutional networks
MOTIVATION: Convolutional neural networks have enabled unprecedented breakthroughs in a variety of computer vision tasks. They have also drawn much attention from other domains, including drug discovery and drug development. In this study, we develop a computational method based on convolutional neu...
Autores principales: | Bui-Thi, Danh, Rivière, Emmanuel, Meysman, Pieter, Laukens, Kris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302762/ https://www.ncbi.nlm.nih.gov/pubmed/35862351 http://dx.doi.org/10.1371/journal.pone.0258628 |
Ejemplares similares
-
GCRNN: graph convolutional recurrent neural network for compound–protein interaction prediction
por: Elbasani, Ermal, et al.
Publicado: (2022) -
Mining the entire Protein DataBank for frequent spatially cohesive amino acid patterns
por: Meysman, Pieter, et al.
Publicado: (2015) -
Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
por: Xiao, Ze, et al.
Publicado: (2020) -
Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks
por: KC, Kishan, et al.
Publicado: (2022) -
Hierarchical graph learning for protein–protein interaction
por: Gao, Ziqi, et al.
Publicado: (2023)