Cargando…

Estimation in regret-regression using quadratic inference functions with ridge estimator

In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularit...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdul Jalil, Nur Raihan, Mohamed, Nur Anisah, Mohamad Yunus, Rossita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302796/
https://www.ncbi.nlm.nih.gov/pubmed/35862316
http://dx.doi.org/10.1371/journal.pone.0271542
Descripción
Sumario:In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularity issues may arise during computation when estimating the parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was introduced in rQIF-MRr to tackle the issues. A simulation study and an application to anticoagulation dataset were conducted to investigate the model’s performance in parameter estimation. The results show that estimations using rQIF-MRr are more efficient than the QIF-MRr.