Cargando…

Estimation in regret-regression using quadratic inference functions with ridge estimator

In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularit...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdul Jalil, Nur Raihan, Mohamed, Nur Anisah, Mohamad Yunus, Rossita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302796/
https://www.ncbi.nlm.nih.gov/pubmed/35862316
http://dx.doi.org/10.1371/journal.pone.0271542
_version_ 1784751711986909184
author Abdul Jalil, Nur Raihan
Mohamed, Nur Anisah
Mohamad Yunus, Rossita
author_facet Abdul Jalil, Nur Raihan
Mohamed, Nur Anisah
Mohamad Yunus, Rossita
author_sort Abdul Jalil, Nur Raihan
collection PubMed
description In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularity issues may arise during computation when estimating the parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was introduced in rQIF-MRr to tackle the issues. A simulation study and an application to anticoagulation dataset were conducted to investigate the model’s performance in parameter estimation. The results show that estimations using rQIF-MRr are more efficient than the QIF-MRr.
format Online
Article
Text
id pubmed-9302796
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-93027962022-07-22 Estimation in regret-regression using quadratic inference functions with ridge estimator Abdul Jalil, Nur Raihan Mohamed, Nur Anisah Mohamad Yunus, Rossita PLoS One Research Article In this paper, we propose a new estimation method in estimating optimal dynamic treatment regimes. The quadratic inference functions in myopic regret-regression (QIF-MRr) can be used to estimate the parameters of the mean response at each visit, conditional on previous states and actions. Singularity issues may arise during computation when estimating the parameters in ODTR using QIF-MRr due to multicollinearity. Hence, the ridge penalty was introduced in rQIF-MRr to tackle the issues. A simulation study and an application to anticoagulation dataset were conducted to investigate the model’s performance in parameter estimation. The results show that estimations using rQIF-MRr are more efficient than the QIF-MRr. Public Library of Science 2022-07-21 /pmc/articles/PMC9302796/ /pubmed/35862316 http://dx.doi.org/10.1371/journal.pone.0271542 Text en © 2022 Abdul Jalil et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Abdul Jalil, Nur Raihan
Mohamed, Nur Anisah
Mohamad Yunus, Rossita
Estimation in regret-regression using quadratic inference functions with ridge estimator
title Estimation in regret-regression using quadratic inference functions with ridge estimator
title_full Estimation in regret-regression using quadratic inference functions with ridge estimator
title_fullStr Estimation in regret-regression using quadratic inference functions with ridge estimator
title_full_unstemmed Estimation in regret-regression using quadratic inference functions with ridge estimator
title_short Estimation in regret-regression using quadratic inference functions with ridge estimator
title_sort estimation in regret-regression using quadratic inference functions with ridge estimator
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302796/
https://www.ncbi.nlm.nih.gov/pubmed/35862316
http://dx.doi.org/10.1371/journal.pone.0271542
work_keys_str_mv AT abduljalilnurraihan estimationinregretregressionusingquadraticinferencefunctionswithridgeestimator
AT mohamednuranisah estimationinregretregressionusingquadraticinferencefunctionswithridgeestimator
AT mohamadyunusrossita estimationinregretregressionusingquadraticinferencefunctionswithridgeestimator