Cargando…
Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks
BACKGROUND: Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. METHOD: We here...
Autores principales: | Becker, Ann-Kristin, Ittermann, Till, Dörr, Markus, Felix, Stephan B., Nauck, Matthias, Teumer, Alexander, Völker, Uwe, Völzke, Henry, Kaderali, Lars, Nath, Neetika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302835/ https://www.ncbi.nlm.nih.gov/pubmed/35862421 http://dx.doi.org/10.1371/journal.pone.0271610 |
Ejemplares similares
-
Correction: Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks
por: Becker, Ann-Kristin, et al.
Publicado: (2023) -
From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach
por: Becker, Ann-Kristin, et al.
Publicado: (2021) -
The relationship between homoarginine and liver biomarkers: a combination of epidemiological and clinical studies
por: Aghdassi, Ali, et al.
Publicado: (2023) -
Effects of Apolipoprotein E polymorphism on carotid intima-media thickness, incident myocardial infarction and incident stroke
por: Pitchika, Anitha, et al.
Publicado: (2022) -
Low serum TSH levels are associated with low values of fat-free mass and body cell mass in the elderly
por: Ittermann, Till, et al.
Publicado: (2021)