Cargando…
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
Urban transportation destination prediction is a crucial issue in the area of intelligent transportation, such as urban traffic planning and traffic congestion control. The spatial structure of the road network has high nonlinearity and complexity, and also, the traffic flow is dynamic due to the co...
Autores principales: | Li, Cong, Zhang, Huyin, Wang, Zengkai, Wu, Yonghao, Yang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302963/ https://www.ncbi.nlm.nih.gov/pubmed/35874108 http://dx.doi.org/10.3389/fnbot.2022.925210 |
Ejemplares similares
-
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Spatial–Temporal Self-Attention Enhanced Graph Convolutional Networks for Fitness Yoga Action Recognition
por: Wei, Guixiang, et al.
Publicado: (2023) -
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
por: Li, Jingcong, et al.
Publicado: (2023) -
Improved spatial–temporal graph convolutional networks for upper limb rehabilitation assessment based on precise posture measurement
por: Bai, Jing, et al.
Publicado: (2023)