Cargando…

Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms

The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic...

Descripción completa

Detalles Bibliográficos
Autores principales: Dragotakes, Quigly, Jacobs, Ella, Ramirez, Lia Sanchez, Yoon, Olivia Insun, Perez-Stable, Caitlin, Eden, Hope, Pagnotta, Jenlu, Vij, Raghav, Bergman, Aviv, D’Alessio, Franco, Casadevall, Arturo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302974/
https://www.ncbi.nlm.nih.gov/pubmed/35816543
http://dx.doi.org/10.1371/journal.ppat.1010697
_version_ 1784751749711527936
author Dragotakes, Quigly
Jacobs, Ella
Ramirez, Lia Sanchez
Yoon, Olivia Insun
Perez-Stable, Caitlin
Eden, Hope
Pagnotta, Jenlu
Vij, Raghav
Bergman, Aviv
D’Alessio, Franco
Casadevall, Arturo
author_facet Dragotakes, Quigly
Jacobs, Ella
Ramirez, Lia Sanchez
Yoon, Olivia Insun
Perez-Stable, Caitlin
Eden, Hope
Pagnotta, Jenlu
Vij, Raghav
Bergman, Aviv
D’Alessio, Franco
Casadevall, Arturo
author_sort Dragotakes, Quigly
collection PubMed
description The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.
format Online
Article
Text
id pubmed-9302974
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-93029742022-07-22 Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms Dragotakes, Quigly Jacobs, Ella Ramirez, Lia Sanchez Yoon, Olivia Insun Perez-Stable, Caitlin Eden, Hope Pagnotta, Jenlu Vij, Raghav Bergman, Aviv D’Alessio, Franco Casadevall, Arturo PLoS Pathog Research Article The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment. Public Library of Science 2022-07-11 /pmc/articles/PMC9302974/ /pubmed/35816543 http://dx.doi.org/10.1371/journal.ppat.1010697 Text en © 2022 Dragotakes et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Dragotakes, Quigly
Jacobs, Ella
Ramirez, Lia Sanchez
Yoon, Olivia Insun
Perez-Stable, Caitlin
Eden, Hope
Pagnotta, Jenlu
Vij, Raghav
Bergman, Aviv
D’Alessio, Franco
Casadevall, Arturo
Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title_full Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title_fullStr Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title_full_unstemmed Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title_short Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms
title_sort bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of cryptococcus neoformans intracellular escape mechanisms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302974/
https://www.ncbi.nlm.nih.gov/pubmed/35816543
http://dx.doi.org/10.1371/journal.ppat.1010697
work_keys_str_mv AT dragotakesquigly bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT jacobsella bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT ramirezliasanchez bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT yoonoliviainsun bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT perezstablecaitlin bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT edenhope bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT pagnottajenlu bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT vijraghav bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT bergmanaviv bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT dalessiofranco bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms
AT casadevallarturo bethedgingantimicrobialstrategiesinmacrophagephagosomeacidificationdrivethedynamicsofcryptococcusneoformansintracellularescapemechanisms