Cargando…
Improvement of nutritional components and in vitro antioxidative properties of soy-powder yogurts using Lactobacillus plantarum
This research was the first to demonstrate changes in nutritional compositions (isoflavone and CLA) from the 50% methanol extracts of soy-powder milk (SPM) and soy-powder yogurt (SPY) through fermentation using Lactobacillus plantarum S48 and P1201 strains. The radical scavenging activities and prot...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taiwan Food and Drug Administration
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303022/ https://www.ncbi.nlm.nih.gov/pubmed/29976398 http://dx.doi.org/10.1016/j.jfda.2017.12.003 |
Sumario: | This research was the first to demonstrate changes in nutritional compositions (isoflavone and CLA) from the 50% methanol extracts of soy-powder milk (SPM) and soy-powder yogurt (SPY) through fermentation using Lactobacillus plantarum S48 and P1201 strains. The radical scavenging activities and protective effects against oxidative stress in LLC-PK(1) cells were also investigated. The average physicochemical characteristics including acidity and viable cell number as well as β-glucosidase activity increased with 0.2 → 0.7%, 7.5 → 9.8 log cfu/mL, and 0.0 3 → 1.75 U/g in SPYs. Total average isoflavones were considerably reduced (3180.3 → 2018.3 μg/g) with the increase of aglycone contents (191.8 → 770.2 μg/g), especially, daidzein exhibited the most remarkable increase rate (98.6 → 460.9 μg/g; > 4.8 times) during fermentation. The CLA and total phenolics also increased with significant differences (ND → 1.6 mg/g; 2.4 → 3.6 mg/GAE/g) between SPM and SPY. Interestingly, the cis-9, trans-11 CLA showed approximately 90% in total content. Moreover, the scavenging capacities against three radicals markedly increased with about 30% in SPYs, as the following order: ABTS > hydroxyl > DPPH. The protective effects on oxidative stress (py-rogallol: [Formula: see text] , SNP: NO, and SIN-1: ONOO(−)) were also observed high cell viabilities (>10%) under LLC-PK(1) cellular system. Our results suggest that SPY may be utilized as a potent source regarding natural antioxidants and beneficial components for health food and medical uses. |
---|