Cargando…
Long-short-term memory machine learning of longitudinal clinical data accurately predicts acute kidney injury onset in COVID-19: a two-center study
OBJECTIVES: This study used the long-short-term memory (LSTM) artificial intelligence method to model multiple time points of clinical laboratory data, along with demographics and comorbidities, to predict hospital-acquired acute kidney injury (AKI) onset in patients with COVID-19. METHODS: Montefio...
Autores principales: | Lu, Justin Y., Zhu, Joanna, Zhu, Jocelyn, Duong, Tim Q |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303068/ https://www.ncbi.nlm.nih.gov/pubmed/35872094 http://dx.doi.org/10.1016/j.ijid.2022.07.034 |
Ejemplares similares
-
Longitudinal prediction of hospital-acquired acute kidney injury in COVID-19: a two-center study
por: Lu, Justin Y., et al.
Publicado: (2021) -
Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs
por: Kikkisetti, Shreeja, et al.
Publicado: (2020) -
Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer
por: Syed, Aaquib, et al.
Publicado: (2023) -
Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs
por: Zhu, Jocelyn, et al.
Publicado: (2020) -
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
por: Liu, Siru, et al.
Publicado: (2022)