Cargando…
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
UAV (unmanned aerial vehicle) captured images have small pedestrian targets and loss of key information after multiple down sampling, which are difficult to overcome by existing methods. We propose an improved YOLOv4 model for pedestrian detection and counting in UAV images, named YOLO-CC. We used t...
Autores principales: | Kong, Hao, Chen, Zhi, Yue, Wenjing, Ni, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303083/ https://www.ncbi.nlm.nih.gov/pubmed/35875752 http://dx.doi.org/10.1155/2022/6106853 |
Ejemplares similares
-
A Lightweight and Accurate UAV Detection Method Based on YOLOv4
por: Cai, Hao, et al.
Publicado: (2022) -
An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images
por: Saydirasulovich, Saydirasulov Norkobil, et al.
Publicado: (2023) -
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs
por: Nepal, Upesh, et al.
Publicado: (2022) -
UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
por: Wang, Gang, et al.
Publicado: (2023) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023)