Cargando…

Biomechanics of Volleyball Players' Run-Up and Take-Off Link under Deep Learning

In volleyball, the correct approach and start (including the number of steps and stride speed) are a prerequisite for all technical movements to attack. It can not only improve the horizontal speed of the athlete, but also properly convert the total speed into vertical speed, so that the hitting poi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Lejun, Liu, Lantao, Zhao, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303086/
https://www.ncbi.nlm.nih.gov/pubmed/35875783
http://dx.doi.org/10.1155/2022/8409626
Descripción
Sumario:In volleyball, the correct approach and start (including the number of steps and stride speed) are a prerequisite for all technical movements to attack. It can not only improve the horizontal speed of the athlete, but also properly convert the total speed into vertical speed, so that the hitting point is improved and the ball speed is accelerated. To explore the biomechanical characteristics of lower limb movements in the run-up and take-off stage of volleyball spiking, this paper takes four male volleyball players from the Physical Education College of X University as the research objects to analyze the kinematics and dynamics of the run-up process and the take-off process. This paper uses the precise recognition method under the background of deep learning to accurately capture the movements of the research object. This paper discusses the effects of time, speed, distance, knee, and hip parameters (angle, joint muscle torque, and power) on the effect of spiking techniques. It is expected to provide reference for the diagnosis, guidance, and muscle strength training of this special technical movement. The  research results show that the horizontal speed of No. 2 athlete is 3.62 m/s and the vertical speed is 2.71 m/s when he takes off. The  landing time is 0.375 s and the lift-off time is 0.16 s. The torque and power of the knee joint changed greatly during the take-off process, and the change of the hip joint was small.