Cargando…
IGBT Fault Prediction Combining Terminal Characteristics and Artificial Intelligence Neural Network
The insulated gate bipolar transistor (IGBT) is widely utilized in the transportation, power, and energy domains because of its high input impedance and minimal on-voltage drop. IGBTs are frequently used in industrial applications for lengthy periods of time, collecting fatigue damage and eventually...
Autor principal: | Li, Cailin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303123/ https://www.ncbi.nlm.nih.gov/pubmed/35872937 http://dx.doi.org/10.1155/2022/7459354 |
Ejemplares similares
-
Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network
por: Wu, Jie, et al.
Publicado: (2021) -
Retracted: Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
FPGA Implementation of AI-Based Inverter IGBT Open Circuit Fault Diagnosis of Induction Motor Drives
por: Rajeswaran, Nagalingam, et al.
Publicado: (2022) -
Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques
por: Illias, Hazlee Azil, et al.
Publicado: (2015) -
Heat Dissipation Characteristics of IGBT Module Based on Flow-Solid Coupling
por: Tan, Lipeng, et al.
Publicado: (2022)