Cargando…

Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus

CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Aulicino, Francesco, Pelosse, Martin, Toelzer, Christine, Capin, Julien, Ilegems, Erwin, Meysami, Parisa, Rollarson, Ruth, Berggren, Per-Olof, Dillingham, Mark Simon, Schaffitzel, Christiane, Saleem, Moin A, Welsh, Gavin I, Berger, Imre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303279/
https://www.ncbi.nlm.nih.gov/pubmed/35801912
http://dx.doi.org/10.1093/nar/gkac587
_version_ 1784751823964340224
author Aulicino, Francesco
Pelosse, Martin
Toelzer, Christine
Capin, Julien
Ilegems, Erwin
Meysami, Parisa
Rollarson, Ruth
Berggren, Per-Olof
Dillingham, Mark Simon
Schaffitzel, Christiane
Saleem, Moin A
Welsh, Gavin I
Berger, Imre
author_facet Aulicino, Francesco
Pelosse, Martin
Toelzer, Christine
Capin, Julien
Ilegems, Erwin
Meysami, Parisa
Rollarson, Ruth
Berggren, Per-Olof
Dillingham, Mark Simon
Schaffitzel, Christiane
Saleem, Moin A
Welsh, Gavin I
Berger, Imre
author_sort Aulicino, Francesco
collection PubMed
description CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.
format Online
Article
Text
id pubmed-9303279
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-93032792022-07-22 Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus Aulicino, Francesco Pelosse, Martin Toelzer, Christine Capin, Julien Ilegems, Erwin Meysami, Parisa Rollarson, Ruth Berggren, Per-Olof Dillingham, Mark Simon Schaffitzel, Christiane Saleem, Moin A Welsh, Gavin I Berger, Imre Nucleic Acids Res Synthetic Biology and Bioengineering CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity. Oxford University Press 2022-07-08 /pmc/articles/PMC9303279/ /pubmed/35801912 http://dx.doi.org/10.1093/nar/gkac587 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Synthetic Biology and Bioengineering
Aulicino, Francesco
Pelosse, Martin
Toelzer, Christine
Capin, Julien
Ilegems, Erwin
Meysami, Parisa
Rollarson, Ruth
Berggren, Per-Olof
Dillingham, Mark Simon
Schaffitzel, Christiane
Saleem, Moin A
Welsh, Gavin I
Berger, Imre
Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title_full Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title_fullStr Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title_full_unstemmed Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title_short Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus
title_sort highly efficient crispr-mediated large dna docking and multiplexed prime editing using a single baculovirus
topic Synthetic Biology and Bioengineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303279/
https://www.ncbi.nlm.nih.gov/pubmed/35801912
http://dx.doi.org/10.1093/nar/gkac587
work_keys_str_mv AT aulicinofrancesco highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT pelossemartin highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT toelzerchristine highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT capinjulien highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT ilegemserwin highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT meysamiparisa highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT rollarsonruth highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT berggrenperolof highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT dillinghammarksimon highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT schaffitzelchristiane highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT saleemmoina highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT welshgavini highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus
AT bergerimre highlyefficientcrisprmediatedlargednadockingandmultiplexedprimeeditingusingasinglebaculovirus