Cargando…
QRNAstruct: a method for extracting secondary structural features of RNA via regression with biological activity
Recent technological advances have enabled the generation of large amounts of data consisting of RNA sequences and their functional activity. Here, we propose a method for extracting secondary structure features that affect the functional activity of RNA from sequence–activity data. Given pairs of R...
Autores principales: | Terai, Goro, Asai, Kiyoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303433/ https://www.ncbi.nlm.nih.gov/pubmed/35390152 http://dx.doi.org/10.1093/nar/gkac220 |
Ejemplares similares
-
Improving the prediction accuracy of protein abundance in Escherichia coli using mRNA accessibility
por: Terai, Goro, et al.
Publicado: (2020) -
CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data
por: Fukunaga, Tsukasa, et al.
Publicado: (2014) -
CoFold: an RNA secondary structure prediction method that takes co-transcriptional folding into account
por: Proctor, Jeff R., et al.
Publicado: (2013) -
Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method
por: Carrascosa, Laura G., et al.
Publicado: (2012) -
Gene set selection via LASSO penalized regression (SLPR)
por: Frost, H. Robert, et al.
Publicado: (2017)