Cargando…
Machine learning: A modern approach to pediatric asthma
Among modern methods of statistical and computational analysis, the application of machine learning (ML) to healthcare data has been gaining recognition in helping us understand the heterogeneity of asthma and predicting its progression. In pediatric research, ML approaches may provide rapid advance...
Autores principales: | Cilluffo, Giovanna, Fasola, Salvatore, Ferrante, Giuliana, Licari, Amelia, Marseglia, Giuseppe Roberto, Albarelli, Andrea, Marseglia, Gian Luigi, La Grutta, Stefania |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303472/ https://www.ncbi.nlm.nih.gov/pubmed/35080316 http://dx.doi.org/10.1111/pai.13624 |
Ejemplares similares
-
Endotyping allergic rhinitis in children: A machine learning approach
por: Malizia, Velia, et al.
Publicado: (2022) -
Rapid response to dupilumab treatment in children with moderate‐to‐severe atopic dermatitis: A case series
por: Votto, Martina, et al.
Publicado: (2022) -
Type 2 inflammation in cystic fibrosis: New insights
por: Manti, Sara, et al.
Publicado: (2022) -
Nutritional status in eosinophilic gastrointestinal disorders: A pediatric case‐control study
por: Votto, Martina, et al.
Publicado: (2022) -
Controversies in the treatment of mild asthma. What novelties and practical implications?
por: Tosca, Maria Angela, et al.
Publicado: (2022)