Cargando…

Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry

The choice of metal and linker together define the structure and therefore the guest accessibility of a metal‐organic framework (MOF), but the large number of possible metal‐linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF w...

Descripción completa

Detalles Bibliográficos
Autores principales: Pétuya, Rémi, Durdy, Samantha, Antypov, Dmytro, Gaultois, Michael W., Berry, Neil G., Darling, George R., Katsoulidis, Alexandros P., Dyer, Matthew S., Rosseinsky, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303542/
https://www.ncbi.nlm.nih.gov/pubmed/34878706
http://dx.doi.org/10.1002/anie.202114573
_version_ 1784751891949813760
author Pétuya, Rémi
Durdy, Samantha
Antypov, Dmytro
Gaultois, Michael W.
Berry, Neil G.
Darling, George R.
Katsoulidis, Alexandros P.
Dyer, Matthew S.
Rosseinsky, Matthew J.
author_facet Pétuya, Rémi
Durdy, Samantha
Antypov, Dmytro
Gaultois, Michael W.
Berry, Neil G.
Darling, George R.
Katsoulidis, Alexandros P.
Dyer, Matthew S.
Rosseinsky, Matthew J.
author_sort Pétuya, Rémi
collection PubMed
description The choice of metal and linker together define the structure and therefore the guest accessibility of a metal‐organic framework (MOF), but the large number of possible metal‐linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three‐dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components’ chemistry and the MOF porosity. Pore dimensions of the guest‐accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations.
format Online
Article
Text
id pubmed-9303542
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93035422022-07-28 Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry Pétuya, Rémi Durdy, Samantha Antypov, Dmytro Gaultois, Michael W. Berry, Neil G. Darling, George R. Katsoulidis, Alexandros P. Dyer, Matthew S. Rosseinsky, Matthew J. Angew Chem Int Ed Engl Communications The choice of metal and linker together define the structure and therefore the guest accessibility of a metal‐organic framework (MOF), but the large number of possible metal‐linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three‐dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components’ chemistry and the MOF porosity. Pore dimensions of the guest‐accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations. John Wiley and Sons Inc. 2022-01-12 2022-02-21 /pmc/articles/PMC9303542/ /pubmed/34878706 http://dx.doi.org/10.1002/anie.202114573 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Pétuya, Rémi
Durdy, Samantha
Antypov, Dmytro
Gaultois, Michael W.
Berry, Neil G.
Darling, George R.
Katsoulidis, Alexandros P.
Dyer, Matthew S.
Rosseinsky, Matthew J.
Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title_full Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title_fullStr Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title_full_unstemmed Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title_short Machine‐Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry
title_sort machine‐learning prediction of metal–organic framework guest accessibility from linker and metal chemistry
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303542/
https://www.ncbi.nlm.nih.gov/pubmed/34878706
http://dx.doi.org/10.1002/anie.202114573
work_keys_str_mv AT petuyaremi machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT durdysamantha machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT antypovdmytro machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT gaultoismichaelw machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT berryneilg machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT darlinggeorger machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT katsoulidisalexandrosp machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT dyermatthews machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry
AT rosseinskymatthewj machinelearningpredictionofmetalorganicframeworkguestaccessibilityfromlinkerandmetalchemistry