Cargando…

Microstructural examination of carbonated 3D‐printed concrete

The recent interest in 3D printing with concrete has generated great interest on how inhomogeneities arise and affect performance parameters, in particular strength and durability. With respect to durability, of particular interest is how 3D‐printed layer interfaces can impact transport of species o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez, Asel Maria Aguilar, Wangler, Timothy, Stefanoni, Matteo, Angst, Ueli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303660/
https://www.ncbi.nlm.nih.gov/pubmed/35142374
http://dx.doi.org/10.1111/jmi.13087
Descripción
Sumario:The recent interest in 3D printing with concrete has generated great interest on how inhomogeneities arise and affect performance parameters, in particular strength and durability. With respect to durability, of particular interest is how 3D‐printed layer interfaces can impact transport of species of interest, such as moisture, chlorides or carbon dioxide in carbonation processes. This is of particular interest considering that the primary use case of 3D‐printed concrete has been as a lost formwork for a cast structural concrete, and thus it is of interest to determine the carbonation resistance. This study consists of a preliminary look at the microstructure after accelerated carbonation of a 3D‐printed concrete used as a lost formwork. Preferential carbonation is observed in the layer interfaces compared to the bulk of the printed filaments, possibly related to porosity from air voids or a locally high capillary porosity corresponding to the lubrication layer.