Cargando…

A study using single‐locus and multi‐locus genome‐wide association study to identify genes associated with teat number in Hu sheep

The multiple teats trait is common in many species of mammals and is considered related to lactation ability in swine. However, in Hu sheep, related gene research is still relatively limited. In this study, a genome‐wide association study was used to identify genetic markers and genes related to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yuhetian, Pu, Yabin, Liang, Benmeng, Bai, Tianyou, Liu, Yue, Jiang, Lin, Ma, Yuehui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303709/
https://www.ncbi.nlm.nih.gov/pubmed/35040155
http://dx.doi.org/10.1111/age.13169
Descripción
Sumario:The multiple teats trait is common in many species of mammals and is considered related to lactation ability in swine. However, in Hu sheep, related gene research is still relatively limited. In this study, a genome‐wide association study was used to identify genetic markers and genes related to the number of teats in the Hu sheep population, a native Chinese sheep breed. A single marker method and several multi‐locus methods were utilized. A total of 61 SNPs were found to be related to the number of teats. Among these, 11 SNPs and one SNP were consistently detected by two and three multi‐locus models respectively. Four SNPs were concordantly identified between the single marker and multi‐locus methods. We also performed quantitative real‐time PCR testing of these identified candidate genes, identifying three genes with significantly different expression. Our study suggested that the LHFP, DPYSL2, and TDP‐43 genes may be related to the number of teats in sheep. The combination of single and multi‐locus GWAS detected additional SNPs not found with only one model. Our results provide new and important insights into the genetic mechanisms of the mammalian multiparous teat phenotype. These findings may be useful for future breeding and understanding the genetics of sheep and other livestock.