Cargando…
Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites
Efficient radiative recombination is essential for perovskite luminescence, but the intrinsic radiative recombination rate as a basic material property is challenging to tailor. Here we report an interfacial chemistry strategy to dramatically increase the radiative recombination rate of perovskites....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303880/ https://www.ncbi.nlm.nih.gov/pubmed/35068052 http://dx.doi.org/10.1002/anie.202115875 |
_version_ | 1784751974388858880 |
---|---|
author | Dong, Haiyun Zhang, Chunhuan Nie, Weijie Duan, Shengkai Saggau, Christian N. Tang, Min Zhu, Minshen Zhao, Yong Sheng Ma, Libo Schmidt, Oliver G. |
author_facet | Dong, Haiyun Zhang, Chunhuan Nie, Weijie Duan, Shengkai Saggau, Christian N. Tang, Min Zhu, Minshen Zhao, Yong Sheng Ma, Libo Schmidt, Oliver G. |
author_sort | Dong, Haiyun |
collection | PubMed |
description | Efficient radiative recombination is essential for perovskite luminescence, but the intrinsic radiative recombination rate as a basic material property is challenging to tailor. Here we report an interfacial chemistry strategy to dramatically increase the radiative recombination rate of perovskites. By coating aluminum oxide on the lead halide perovskite, lead–oxygen bonds are formed at the perovskite‐oxide interface, producing the perovskite surface states with a large exciton binding energy and a high localized density of electronic state. The oxide‐bonded perovskite exhibits a ≈500 fold enhanced photoluminescence with a ≈10 fold reduced lifetime, indicating an unprecedented ≈5000 fold increase in the radiative recombination rate. The enormously enhanced radiative recombination promises to significantly promote the perovskite optoelectronic performance. |
format | Online Article Text |
id | pubmed-9303880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93038802022-07-28 Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites Dong, Haiyun Zhang, Chunhuan Nie, Weijie Duan, Shengkai Saggau, Christian N. Tang, Min Zhu, Minshen Zhao, Yong Sheng Ma, Libo Schmidt, Oliver G. Angew Chem Int Ed Engl Research Articles Efficient radiative recombination is essential for perovskite luminescence, but the intrinsic radiative recombination rate as a basic material property is challenging to tailor. Here we report an interfacial chemistry strategy to dramatically increase the radiative recombination rate of perovskites. By coating aluminum oxide on the lead halide perovskite, lead–oxygen bonds are formed at the perovskite‐oxide interface, producing the perovskite surface states with a large exciton binding energy and a high localized density of electronic state. The oxide‐bonded perovskite exhibits a ≈500 fold enhanced photoluminescence with a ≈10 fold reduced lifetime, indicating an unprecedented ≈5000 fold increase in the radiative recombination rate. The enormously enhanced radiative recombination promises to significantly promote the perovskite optoelectronic performance. John Wiley and Sons Inc. 2022-02-07 2022-03-21 /pmc/articles/PMC9303880/ /pubmed/35068052 http://dx.doi.org/10.1002/anie.202115875 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Dong, Haiyun Zhang, Chunhuan Nie, Weijie Duan, Shengkai Saggau, Christian N. Tang, Min Zhu, Minshen Zhao, Yong Sheng Ma, Libo Schmidt, Oliver G. Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title | Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title_full | Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title_fullStr | Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title_full_unstemmed | Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title_short | Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites |
title_sort | interfacial chemistry triggers ultrafast radiative recombination in metal halide perovskites |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303880/ https://www.ncbi.nlm.nih.gov/pubmed/35068052 http://dx.doi.org/10.1002/anie.202115875 |
work_keys_str_mv | AT donghaiyun interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT zhangchunhuan interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT nieweijie interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT duanshengkai interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT saggauchristiann interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT tangmin interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT zhuminshen interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT zhaoyongsheng interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT malibo interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites AT schmidtoliverg interfacialchemistrytriggersultrafastradiativerecombinationinmetalhalideperovskites |