Cargando…
Transition Metal Catalyst Free Synthesis of Olefins from Organoboron Derivatives
Stereoselective preparation of highly substituted olefins is still a severe challenge that requires well defined elimination precursors. Organoboron chemistry is particularly suited for the preparation of molecules with adjacent stereocenters. As organo boron substrates with leaving groups in β‐posi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303902/ https://www.ncbi.nlm.nih.gov/pubmed/35137987 http://dx.doi.org/10.1002/chem.202104125 |
Sumario: | Stereoselective preparation of highly substituted olefins is still a severe challenge that requires well defined elimination precursors. Organoboron chemistry is particularly suited for the preparation of molecules with adjacent stereocenters. As organo boron substrates with leaving groups in β‐position can undergo stereospecific syn‐ or anti‐elimination, this chemistry harbors great potential for the synthesis of complex olefins. In recent years three main strategies emerged, which differ in their approach to the β‐functionalized organoboron elimination precursor. (i) Stereoselective preparation of such elimination precursor can be achieved by addition of a boron‐stabilized anion (d(1)) to an aldehyde or ketone (a(1)) or diastereoselective 1,3‐rearrangement of suitable boron‐ate‐complexes. Stereospecific methods rely either on (ii) diastereospecific 1,2‐metalate rearrangement of boron‐ate‐complexes that involve opening of appropriate heterocycles or (iii) addition of chiral carbenoids (d(1)*) to chiral boronates (a(1)*) with a leaving group in α‐position. |
---|